A conservative method for the solution of population balance with coagulation, and application to soot formation

Anxiong Liu, Stelios Rigopoulos

a.liu15@imperial.ac.uk

Department of Mechanical Engineering, Imperial College London, London, United Kingdom.

June 2019
Challenges in modelling soot formation in combustion

Reacting flows carry a particulate phase in a number of engineering applications – sooting flame:

- Aerosol dynamics
 - Nucleation
 - Surface processes (growth and oxidation)
 - Inter-particle processes (coagulation, aggregation)
 - Breakage

- Aerosol-turbulence interaction
 - Unknown correlations arising from interaction among particles, species and flow
Overview of this research

We are currently developing models for the following:

- Prediction of the particle size distribution by solving the discretised population balance equation (PBE)

\[
\frac{\partial n(v)}{\partial t} = B_0 (Y_a) \delta(v - v_0) - \frac{\partial}{\partial v} \left[G(v, Y_a) \cdot n(v) \right]
\]

- Modelling the complete processes during soot formation
- \textit{Conservative finite volume method for the coagulation process}
- Modelling of the morphology of aggregates

- Coupling of the PBE with chemical kinetics and flame dynamics (PBE-CFD)
 - Simulation of laminar flames
Particle size distribution

- Importance of particle size distribution (PSD)
 - Prediction of PSD is increasingly important for new regulations (PM2.5 & PM10);
 - Coagulation (aggregation) rate is size-dependent;
 - Growth and oxidation rates depend on surface area
Population balance equation (PBE)

- Complex integral-differential equation

\[\frac{\partial n(v)}{\partial t} = B_0(Y_a) \delta(v-v_0) - \frac{\partial}{\partial v} \left[G(v,Y_a) \cdot n(v) \right] \]

Methods for solution:
- Analytical and similarity solutions
- Monte Carlo methods
- Method of moments and variants
- Discretisation (or sectional) methods: discrete methods, finite volume / element scheme

Main challenges in discretisation methods
- Distribution can vary over several orders of magnitude \((10^{-27} \sim 10^{-16} \text{m}^3)\), while nucleation is localised at the minimum size;
- **Coagulation is an integral term** while growth/oxidation term is first-order derivative with sharp fronts;
- Conservation of moments and accurate prediction of the change of particle size distribution in the process of coagulation.
Problems in the discretisations of the coagulation process

- Most discretisation (or sectional) methods assume that the particles are concentrated at discrete points, which is no physical;
- A non-uniform grid must be employed to cover a size range;
- Yet, it is no guaranteed that the particle formed in coagulation events will lie at grid points;
- Particles are redistributed so as to conserve the total volume and change of particle number at the expense of accuracy.

- Kumar and Ramkrishna method

Diagram:

- \(n, \frac{dn}{dt} \)
- \(n_j \)
- \(n_k \)
- \(v_{j-1} \)
- \(v_j \)
- \(v_{k-1} \)
- \(v_k \)
- \(v_{i-2} \)
- \(v_{i-1} \)
- \(v_i \)
- \(v_{i+1} \)
One of the double integrations is replaced by a quadrature rule

\[
\frac{dn_i}{dt}\bigg|_{\text{source}} = \frac{1}{\Delta v_i} \int_{v_{i-1}}^{v_i} \left(\int_{v_0}^{\frac{v_i}{2}} \beta(v-w, w)n(v-w)n(w)dw \right) dv
\]

\[
\approx \frac{1}{2} \left(\int_{v_0}^{\frac{v_{i-1} - w}{2}} \beta(v_{i-1} - w, w)n(v_{i-1} - w)n(w)dw + \int_{v_0}^{\frac{v_i}{2}} \beta(v_i - w, w)n(v_i - w)n(w)dw \right)
\]

\[
= \frac{1}{2} \left(\frac{dn(v_{i-1})}{dt}\bigg|_{\text{source}} + \frac{dn(v_i)}{dt}\bigg|_{\text{source}} \right)
\]

coagulation sources

- by intervals j and k
- by intervals j and $k + 1$
- by intervals $j + 1$ and k
- by intervals $j + 1$ and $k + 1$
Our proposed discretisation method for the coagulation

- Each double integration is located and calculated

\[
\frac{dn_i}{dt}_{\text{source}} = \frac{1}{\Delta v_i} \int_{v_{i-1}}^{v_i} dv \int_{v_0}^{v} dw \beta(v-w) n(v-w) n(w) dw
\]

\[
= \frac{1}{\Delta v_i} \sum_{\text{all shapes}} \bar{\beta}_{jk} n_j n_k \Delta S_{jk}
\]
Our proposed discretisation method for the coagulation

- Each double integration is located and calculated \(^1\);
 - The whole algorithm is rigorous except the evaluation of coagulation kernel at each interval-pair;
 - Different scenarios are likely to happen due to the non-uniformity of the grid;
 - The implementation has been standardised as a solver;
 - In the implementation, all geometric operations are carried out in advance and tabulated;

\[^1\] A. Liu, S. Rigopoulos, Combustion and Flame, 2019.
Results of pure coagulation: accuracy

- Comparison with analytical solution (a, b, c) and direct numerical solution of the discrete PBE (d, e, f), six kernels, exponential initial distribution.
Results of pure coagulation: economy and excellent adaption

- **Time consumption:** Our method vs. Kumar and Ramkrishna method.

<table>
<thead>
<tr>
<th>No. of grid</th>
<th>No. of subinterval pairs</th>
<th>No. of product operations in each subinterval pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of grid</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Kumar’s method</td>
<td>1735</td>
<td>6863</td>
</tr>
<tr>
<td>Our method</td>
<td>1914</td>
<td>7244</td>
</tr>
</tbody>
</table>

- **Adaption to distorted grid:** Our method vs. Kumar and Ramkrishna method.

Standard exponential grid \((\alpha = 1.3)\)

Distorted grid \((\alpha = 1.3^2)\)
PBE must be augmented to account for:

- Convective transport in physical space;
- Thermophoresis \(\mathbf{u}^T \): depending on \(\mu \) and \(\frac{dT}{dx_i} \);
- Particle diffusion (much smaller than species’ diffusion).

\[
\frac{\partial n(v, x_j, t)}{\partial t} + \frac{\partial}{\partial x_j} \left[(\mathbf{u} + \mathbf{u}^T) \cdot n(v, x_j, t) \right] = D_p \frac{\partial n(v, x_j, t)}{\partial x_j} + B_0(Y_a) \delta(v - v_0) - \frac{\partial}{\partial v} \left[G(v, Y_a) \cdot n(v) \right]
\]

- Coagulation source
- Coagulation sink
Numerical framework

Coupling of PBE – CFD

PBE equation:
\[N(v; x, t) \]

Conservation equation of momentum:
\[\frac{\partial (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} = - \frac{\partial}{\partial x_i} \left(p + \frac{2}{3} \mu \frac{\partial u_k}{\partial x_k} \right) + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \rho g_i \]

Reactive scalars transport equation (Energy & species concentrations):
\[\frac{\partial \rho Y}{\partial t} + \frac{\partial (\rho u_j Y)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D(x, t) \frac{\partial Y}{\partial x_j} \right) + \rho \dot{\omega} \]

where
- \(u(x,t) \) velocity
- \(p(x,t) \) pressure
- \(Y(x,t) \) reactive scalar
- \(\rho(x,t) \) density
- \(\mu(x,t) \) dynamic viscosity
- \(D(x,t) \) reactive diffusivity

PBE – BOFFIN in-house code
Soot mechanism

- Gas phase: ABF mechanisms 101 species (up to pyrene C16H10) & 574 reactions [1]
- Nucleation: PAH (polycyclic aromatic hydrocarbons) dimerization
- Surface process: HACA mechanism
 - PAH condensation
- Coagulation: size-dependent kernel

\[\text{Continuum regime} \quad \beta^c \]
\[\text{Free molecular regime} \quad \beta^{\text{fm}} \quad \text{Kn}(v) >> 1 \]
\[\text{Transient regime} \quad \beta^{\text{tr}} \quad \text{Kn}(v) << 1 \]

Case study: CFD simulation of Santoro flame

- **Laminar diffusion flame** is a simple combustion phenomenon including complete aerodynamic processes;
- **2D physical domain** is sufficient for simulation;
- The combustion reactions for **ethylene fuels** are relatively detailed and accurate;
- **Soot emissions** are obvious;
- **Measurements** for soot formation in ethylene laminar diffusion flame are available.

200 × 100 cells
physical domain
270mm × 55mm

60 cells
PBE grid
[2.0e-28m³, 1.0e-16m³]

Non-smoking flame:

\[\nu_{\text{fuel}} = 3.98\text{cm/s}, \quad \nu_{\text{air}} = 8.98\text{cm/s} \]

(a) Schematic plot of Santoro flame [1]

Santoro flame: temperature profiles

(a) Axial profile on centerline

(b) Radial profile
Integrated soot volume fraction and size distribution

(a) Integrated soot volume fraction at different heights

(b) Particle size distribution at different heights
Breakdown of the average CPU time for a time step

<table>
<thead>
<tr>
<th>Subroutines</th>
<th>Time consumption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 nodes</td>
</tr>
<tr>
<td>Flow field</td>
<td>19.5</td>
</tr>
<tr>
<td>Scalar convection & diffusion</td>
<td>29.5</td>
</tr>
<tr>
<td>Chemistry</td>
<td>46.0</td>
</tr>
<tr>
<td>PBE (total)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Breakdown of PBE step:
- nucleation & growth: 0.8, 0.8, 0.7
- coagulation algorithm: 1.6, 2.8, 5.1
- coagulation kernel: 2.6, 4.6, 8.4
A conservative direct double integral method is proposed to discretize the coagulation process for the efficient and accurate solution of the PBE;

In this work, a combined PBE-CFD model is presented to characterize the flame structure and soot formation in a laminar diffusion flame; a set of detailed gas-phase chemistry and complete soot kinetics is employed.

The flame structure, gas phase species, soot integrated parameters and particle size distribution can be predicted by the model.
A conservative method for the solution of population balance with coagulation, and application to soot formation

Anxiong Liu, Stelios Rigopoulos

a.liu15@imperial.ac.uk

Thank you