Soot particle measurements over a series of laminar pool flames and diffusion flames of biofuels and methyl esters

• B. Tiana, L. Fana, C. T. Chongb, S. Nia, J.-H. Ngc, S. Hochgreba

a. Department of Engineering, University of Cambridge
b. UTM Centre for Low Carbon Transport in cooperation with Imperial College London, Universiti Teknologi Malaysia
c. Faculty of Engineering and the Environment, University of Southampton Malaysia Campus (USMC)

• Cambridge Particle Meeting, 26 June, 2019, Cambridge
Background

1. BP Global, Statistical Review of World Energy 2018

Typical 10-15% mass ratio of oxygen$^{[4]}$

How low it can be?

Renewable
Zero carbon footprint
Lower soot emission$^{[2,3]}$
Soot formation of biodiesel in pool flame

- Many studies has been produced in engines.

- fewer measurements have been made in well controlled devices suitable for model comparisons, such as:

<table>
<thead>
<tr>
<th>Type of Flame</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray flames</td>
<td>C. Allouis, et al. 1998</td>
</tr>
</tbody>
</table>

- Soot concentration is lower by an order of magnitude compared to diesel.

- **Unsaturation level** in biodiesel could be a prominent factor on soot formation.

▲ Singapore – Crude Oil Tank Fire, Jurong Island [1]

▲ Combustion of a biodiesel droplet [2]

Relevant regarding safety and storage, and fires during accidental spills

Related to droplet burning: they do not require full vaporization

[1]. http://www.hawkesfire.co.uk/singapore-crude-oil-tank-fire-jurong-island

[2]. Kue-Yong Pan, Ming-Chun Chiu, Droplet combustion of blended fuels with alcohol and biodiesel/diesel in microgravity condition, Fuel, Volume 113, 2013, Pages 757-765,
Tested fuels

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>DU</th>
<th>GO</th>
<th>RB</th>
<th>ML</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauric acid (C12:0)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Myristic acid (C14:0)</td>
<td>0.0033</td>
<td>0.0091</td>
<td>0.0042</td>
<td>0.0037</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Palmitic acid (C16:0)</td>
<td>0.1392</td>
<td>0.3167</td>
<td>0.2683</td>
<td>0.2164</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Stearic acid (C18:0)</td>
<td>0.6015</td>
<td>0.5646</td>
<td>0.5875</td>
<td>0.4305</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Oleic acid (C18:1)</td>
<td>0.1718</td>
<td>0.1096</td>
<td>0.1314</td>
<td>0.3214</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Linoleic acid (C18:2)</td>
<td>0.0684</td>
<td>0.0000</td>
<td>0.0086</td>
<td>0.0117</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Linolenic acid (C18:3)</td>
<td>0.0159</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0163</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Unsaturation</td>
<td>0.3561</td>
<td>0.1096</td>
<td>0.1486</td>
<td>0.3937</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Average C Chain</td>
<td>17.7076</td>
<td>17.3303</td>
<td>17.4466</td>
<td>17.5523</td>
<td>12.0000</td>
<td>14.0000</td>
</tr>
<tr>
<td>MW (g/mol)</td>
<td>293.1923</td>
<td>288.4042</td>
<td>289.9553</td>
<td>290.9453</td>
<td>214.0000</td>
<td>242.0000</td>
</tr>
<tr>
<td>△H (MJ/kg)</td>
<td>40.6±1.5</td>
<td>39.4±1.1</td>
<td>39.4±1.1</td>
<td>37.5</td>
<td>38.02</td>
<td>39.03</td>
</tr>
<tr>
<td>General formula</td>
<td>C_{18.7}H_{36.7}O_{2}</td>
<td>C_{18.3}H_{36.4}O_{2}</td>
<td>C_{18.4}H_{36.6}O_{2}</td>
<td>C_{18.6}H_{36.3}O_{2}</td>
<td>C_{13}H_{26}O_{2}</td>
<td>C_{15}H_{30}O_{2}</td>
</tr>
<tr>
<td>C mass fraction</td>
<td>0.7657</td>
<td>0.7627</td>
<td>0.7634</td>
<td>0.7652</td>
<td>0.7290</td>
<td>0.7438</td>
</tr>
<tr>
<td>H mass fraction</td>
<td>0.1252</td>
<td>0.1264</td>
<td>0.1262</td>
<td>0.1248</td>
<td>0.1215</td>
<td>0.1240</td>
</tr>
<tr>
<td>O mass fraction</td>
<td>0.1091</td>
<td>0.1110</td>
<td>0.1104</td>
<td>0.1100</td>
<td>0.1495</td>
<td>0.1322</td>
</tr>
</tbody>
</table>

- Y_i Mass fraction of species i
- N_i Number of carbon-carbon double bond

Burners setup

Pool burner

Pre-vapourised diffusion burner

Measured fuel consumption rate
Laser induced incandescence (LII) setup

Uncertainty in LII signal $\leq 10\%$

LII signal intensity VS laser fluence
Detection wavelength

Calibration and signal-trapping correction

- Extinction to obtain \(f_v \), using Rayleigh Approximation

\[K_{ext} = \frac{6\pi E(m_i)}{\lambda_s} f_v \rightarrow f_v \]

- Obtain \(C \) to calibrate all LII images

\[f_v = S / C \rightarrow C \]

- Signal trapping

- **Camera**

\[\Delta_{i,j} = \delta \left(\sqrt{j^2 - i^2} - \sqrt{(j-1)^2 - i^2} \right), i < j \leq N \]

\[Cf_v(i) = S_m(i) \exp \left(\frac{6\pi E(m_i)}{\lambda_s} \sum_{j=i+1}^{N} f_v(j) \Delta_{i,j} \right) \]

\[Cf_v(N-1) = S_m(N-1) \exp \left(\frac{6\pi E(m_i)}{\lambda_s} f_v(N) \Delta_{N-1,N} \right) \]

\[Cf_v(0) = S_m(0) \exp \left(\frac{6\pi E(m_i)}{\lambda_s} \delta \sum_{j=1}^{N} f_v(j) \right) \]
D100 pure petroleum diesel flame, HAB=25 mm, maxima of $-\ln(I_t/I_0)$
Result and discussion

- Page 9-11 of this presentation has been removed as they contain some unpublished data.
Conclusions

- The tested real biodiesels have **similar oxygen composition but different degrees** of unsaturation.

- The measured f_v produced by neat biofuels are **7 to 35%** of diesels in both configurations.

- **Degree of unsaturation** is the key factor for soot production of biodiesels.

- Blending leads to lower soot values.

- Pool flames produce **similar level of maximum soot volume fraction** but **more integrated soot volume fraction and larger particle size** comparing to pre-vapourised flames.
Thanks!

Acknowledgement

The authors gratefully acknowledge the financial support from Universiti Teknologi Malaysia under grant number RG84263, and a Newton Advanced Fellowship (NA160115) for C. T. Chong.