Posttranslational modification of Birch and Ragweed allergen proteins by common gas phase pollutants, NO\textsubscript{2} and O\textsubscript{3}

Marliyyah A. Mahmood*, Francis D. Pope and William J. Bloss

School of Geography, Earth and Environmental, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT,

The impact of air pollution on the environment and human health is a vital concern to the world. Air pollution exacerbates several medical conditions such as allergies; in particular hay fever and asthma. The global incidence of hay fever has been rising for decades; however, the underlying reasons behind this rise remain unclear. It is hypothesized that the exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO\textsubscript{2}) and ozone (O\textsubscript{3}), increases the allergenicity of the pollen and thus increases hay fever incidence. Since atmospheric pollutants tend to have greater concentrations within urban areas (in particular NO\textsubscript{2}) the hypothesis suggests that greater allergenicity should occur in urban areas. Indeed, several studies do suggest higher hay fever incidence within urban areas compared to rural areas.

Previous published work suggests a link between increased allergies and changes in the chemical composition of pollen protein via posttranslational modification of the protein. This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically applicable exposures of gas phase NO\textsubscript{2}, O\textsubscript{3} and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer).

Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular nitration that occurs upon tyrosine residues and nitrosylation on cysteine residues. These modifications may affect human immune response to the pollen protein, which may suggest a possible reason for increased allergies in reaction to such chemically altered protein. The laboratory-derived results will be supported with a time series analysis of asthma incidence rates for the London area, which will take into account the pollen count, and pollutant concentrations.