Clinically Relevant *In Vitro* Tests for the Assessment of Innovator and Generic Nasal Spray Products

Mandana Azimi¹, P. Worth Longest¹, ², Jag Shur³, Robert Price³ & Michael Hindle¹

¹Department of Pharmaceutics, Virginia Commonwealth University, USA

²Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, USA

³Department of Pharmacy and Pharmacology, University of Bath, UK
Nasal drug delivery

- Can be used for local or systemic delivery
- Metered dose nasal sprays are the most commonly used devices
- Drug delivery efficiency depends on:
 - Nasal geometry
 - Patient use
 - Formulation and device combination
In vitro testing: quality control vs clinically relevant methods

- Currently in vitro QC methods focus on device and formulation performance including methods to characterize spray plume and droplet size.

- The bio-relevance of these methods remains unclear.

- Nasal drug delivery efficiency and assessments of bioequivalence may be aided by the use of more clinically relevant in vitro testing using

 - physically realistic nasal airway models combined with

 - simulated patient use parameters.
Objective

To test the utility of a potential clinically relevant *in vitro* nasal deposition method and assess the effects of varying:

- Nasal geometry
- Patient use
- Formulation and device combination
Nasal geometry

<table>
<thead>
<tr>
<th>Data set</th>
<th>Guilmette data, MRI scan of an individual - VCU Model 1</th>
<th>VCU Medical Center, CT scan of an individual - VCU Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dh, nostril and nasopharynx</td>
<td>12.1 mm, 5.9 mm</td>
<td>10.6 mm, 4.5 mm</td>
</tr>
<tr>
<td>Surface area (SA)</td>
<td>8024.2 mm(^2)</td>
<td>6802.3 mm(^2)</td>
</tr>
<tr>
<td>Volume (V)</td>
<td>10832 mm(^3)</td>
<td>5118 mm(^3)</td>
</tr>
<tr>
<td>SA/V</td>
<td>0.7 mm(^{-1})</td>
<td>1.3 mm(^{-1})</td>
</tr>
<tr>
<td>SA of the nasal valve</td>
<td>1156 mm(^2)</td>
<td>1493 mm(^2)</td>
</tr>
<tr>
<td>Anterior nose volume</td>
<td>3.2 ml</td>
<td>2.2 ml</td>
</tr>
</tbody>
</table>
Experimental setup

- Two actuations of Nasonex delivered into a single nostril

- Regional drug deposition was measured on:

 i) Nasal spray device

 ii) Anterior nose region + drip

 iii) Middle passages + nasopharynx

 iv) Throat + filter
Patient use

Head angle: 30° or 50°

Position: 9 or 5 mm

Actuation force: 4.5 or 7.5 kg

Timing: D or E

Flow rate (L/min)

Actuation

DURING

END

Actuation

Timing

Actuation

DURING

END

Flow rate (L/min)
Nasonex middle passage deposition
VCU nasal model 1

- Nasal deposition varied significantly with changing patient use factors
- Coordinating inhalation with actuation increased middle passage deposition

Mean regional deposition (% recovered dose) and standard deviation (n= 4).
Nasonex middle passage deposition
VCU nasal model 2

- Low impact of patient use factors on nasal deposition in model 2

Mean regional deposition (% recovered dose) and standard deviation (n= 4).
Nasonex middle passage deposition
VCU nasal model 1 and 2

- High middle passage deposition in model 2 compared to model 1

Mean regional deposition (% recovered dose) and standard deviation (n= 4). * - p<0.05 paired t-test
Evaluation of realistic *in vitro* test method

- Formulation and device
 - Mometasone furoate: Nasonex vs “in house”
 - Fluticasone propionate: Flonase vs generic

- Nasal Geometry: VCU models 1 & 2

- Patient Use
 - Patient use conditions producing “low – level 1”, “intermediate – level 2” and “high - level 3” Nasonex middle passage deposition
Patient use factors

<table>
<thead>
<tr>
<th>Expected middle passage drug deposition</th>
<th>Angle</th>
<th>Position (mm)</th>
<th>Force (kg)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCU Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 ~ 20%</td>
<td>50°</td>
<td>9</td>
<td>7.5</td>
<td>E</td>
</tr>
<tr>
<td>Level 2 ~ 40%</td>
<td>30°</td>
<td>5</td>
<td>7.5</td>
<td>D</td>
</tr>
<tr>
<td>Level 3 ~ 60%</td>
<td>50°</td>
<td>5</td>
<td>7.5</td>
<td>D</td>
</tr>
<tr>
<td>VCU Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 ~ 50%</td>
<td>30°</td>
<td>5</td>
<td>7.5</td>
<td>E</td>
</tr>
<tr>
<td>Level 2 ~ 60%</td>
<td>30°</td>
<td>5</td>
<td>4.5</td>
<td>D</td>
</tr>
<tr>
<td>Level 3 ~ 77%</td>
<td>50°</td>
<td>5</td>
<td>4.5</td>
<td>D</td>
</tr>
</tbody>
</table>
Droplet size distributions

<table>
<thead>
<tr>
<th>Actuation force of 7.5 kg</th>
<th>Dv10 (μm)</th>
<th>Dv50 (μm)</th>
<th>Dv90 (μm)</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasonex 50 μg (Merck & Co., USA)</td>
<td>16.1 (0.6)</td>
<td>44.5 (2.7)</td>
<td>107.0 (5.4)</td>
<td>1.4</td>
</tr>
<tr>
<td>“In house” mometasone furoate 50 μg (University of Bath, UK)</td>
<td>16.1 (0.7)</td>
<td>47.2 (1.7)</td>
<td>91.2 (1.7)</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuation force of 5.8 kg</th>
<th>Dv10 (μm)</th>
<th>Dv50 (μm)</th>
<th>Dv90 (μm)</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flonase 50 μg (GlaxoSmithKline, USA)</td>
<td>20.9 (1.1)</td>
<td>70.8 (1.4)</td>
<td>120.3 (1.6)</td>
<td>1.4</td>
</tr>
<tr>
<td>Generic fluticasone propionate 50 μg (Roxane Laboratory, USA)</td>
<td>21.9 (0.2)</td>
<td>69.4 (2.1)</td>
<td>119.6 (0.9)</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Mometasone furoate middle passage drug deposition

- **Model 1**
 - No statistical difference in the middle passage drug deposition for the two nasal spray products at each respective level.

- **Model 2**

Mean regional deposition (% recovered dose) and standard deviation (n= 4).
No statistical difference in the middle passage drug deposition for the two nasal spray products at each respective level.

Mean regional deposition (\% recovered dose) and standard deviation (n= 4).
Conclusions

• Realistic *in vitro* test methods could have utility as an inexpensive tool for early evaluation of regional nasal deposition

• *In vivo* validation will be needed before this method will be accepted as a technique for evaluating bioequivalence of nasal spray products

• The effects of patient use factors and geometry of the nasal cavity were found to have significant effects on middle passage drug delivery
Acknowledgments

- Guenther Hochhaus, Ph.D.
- Renish Delvadia, Ph.D.
- Bhawana Saluja, Ph.D.
- Mohammad Absar, Ph.D.
- IngMar Medical (ASL 5000-XL Breath Simulator)
- InnovaSystems Inc (Mighty Runt Actuator Station)

Funding was provided by Contract # HHSF223201310220C, from the Department of Health and Human Services (DHHS), Food and Drug Administration. The content is solely the responsibility of the authors and does not necessarily reflect the official policies of the DHHS; nor does any mention of trade names, commercial practices or organizations imply endorsement by the United States Government.