Metered Dose Inhaler Propellants
The driving force behind inhaled medications for 60 years

Dr Tim Noakes
Dr Stuart Corr

7th December 2016
Acknowledgements

Mexichem is extremely grateful to Professor Rob Price and Dr Jag Shur of Nanopharm, for their help, wisdom, and assistance in investigating this area, and their valuable contribution to this paper.
The MDI
MDI Propellants past and present

Generic requirements:
- Non-toxic
- Stable. No chemical reactivity with drug
- Non flammable

Suitable physical properties:

<table>
<thead>
<tr>
<th>FC No.</th>
<th>Formula</th>
<th>B.Pt (°C)</th>
<th>S.G. (g/cc, 20°C)</th>
<th>ODP+</th>
<th>++GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC 11</td>
<td>CFCl₃</td>
<td>23.7</td>
<td>1.49</td>
<td>1</td>
<td>4660</td>
</tr>
<tr>
<td>CFC 12</td>
<td>CF₂Cl₂</td>
<td>-29.8</td>
<td>1.33</td>
<td>1</td>
<td>10800</td>
</tr>
<tr>
<td>HFA 134a</td>
<td>CF₃-CFH₂</td>
<td>-26.2</td>
<td>1.23</td>
<td>0</td>
<td>1300</td>
</tr>
<tr>
<td>HFA 227ea</td>
<td>CF₃-CFH-CF₃</td>
<td>-16.5</td>
<td>1.41</td>
<td>0</td>
<td>3350</td>
</tr>
</tbody>
</table>

+ Ozone depletion potential
++ Greenhouse warming potential, time horizon 100y, IPCC AP5
MDI history - The impact of environmental regulation

Early MDIs
- No environmental regulation
- Medihaler (1956)
- Ventolin (1969)
- CFC 11+12

1980’s
- Technology development
 - Two stage filling
 - CFC11 slurry to open can
 - Crimp up
 - Gas with CFC 12
 - Substantial growth
 - B-agonists, corticosteroids and antichologenics
 - Ozone hole discovered

Transition to HFAs 1990-2015
 - HFAs 134a or 227ea replace CFC 12
 - Airomir (SS 1995)
 - Ventolin Evohaler (SS1997)
 - Seretide (FP, SX 2000)
 - Clenil (BDP 2006)
 - Symbicort (FF, BUD 2006)
 - China last out of CFCs (2015)
 - Strong platform technology
 - Growing focus on global warming

2015→
- 2016 ~ 750m units w/w*
- GWP Regulation

* Source: Mexichem estimate
Environmental regulation of Fluorine-containing Gases

1. Montreal Protocol
 - 1989-2015. Phase *out* of CFC gases
 - Annually reviewed essential use allowances for MDI
 - Last authorised use in 2015 (China)

2. F-Gas regulation of refrigerants
 - EU: F-Gas regulations 2015-30. Phase *down*
 - 21% of current use by 2030 – carbon equivalent based
 - MDI application partially exempted

3. Montreal Protocol Mk II
 - Protocol amended to cover HFC gases 2018-2036
 - Global
 - Phase-*down* to ~ 15% of baseline. Carbon equivalent based
 - Supersedes existing local regulations
 - No automatic MDI exemption, **but review mechanism**
Current and future regulation

North America MP Proposal
summary of phase-down schedule for Art.5 and non-Art.5 countries and EU

% of CO2e baseline vs. years

- Non-Art.5
- Art.5
- EU
Respiratory Industry Commitment to Environmental Improvement

Steady movement towards lowering carbon footprint of respiratory dosage forms:
• MDIs:
 • Less HFA per shot
 • Recycle schemes
 • Alternative dosage forms

How can a propellant supplier contribute?
• Good stewardship (customer advice, eliminate losses)

• A new low carbon medical propellant? It would need:
 – Correct safety profile, *sufficiently* inert
 – Acceptable physical characteristics (Bpt, liquid density)
 – Cost, availability, future sustainability
 plus
 – Significant performance gains

We have been looking…..
New MDI propellant development
1,1-difluoroethane (HFA 152a)

A colourless, odourless, low-toxicity low boiling liquid. In large scale industrial use, as:

- Polymer precursor
- Consumer aerosol propellant
- Foam blowing agent
- Made at scale (~80-100 ktpa)
HFA 152a: Basic Physical Properties compared

<table>
<thead>
<tr>
<th>FC No.</th>
<th>Formula</th>
<th>B.Pt (°C)</th>
<th>S.G. (g/cc, 20°C)</th>
<th>ODP+</th>
<th>++GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC</td>
<td>CFCl₃</td>
<td>23.7</td>
<td>1.49</td>
<td>1</td>
<td>4660</td>
</tr>
<tr>
<td>CFC</td>
<td>CF₂Cl₂</td>
<td>-29.8</td>
<td>1.33</td>
<td>1</td>
<td>10800</td>
</tr>
<tr>
<td>HFA</td>
<td>CF₃-CFH₂</td>
<td>-26.2</td>
<td>1.23</td>
<td>0</td>
<td>1300</td>
</tr>
<tr>
<td>HFA</td>
<td>CF₃-CFH-CF₃</td>
<td>-16.5</td>
<td>1.41</td>
<td>0</td>
<td>3350</td>
</tr>
<tr>
<td>HFA</td>
<td>CF₂H-CH₃</td>
<td>-24.7</td>
<td>0.91</td>
<td>0</td>
<td>138</td>
</tr>
</tbody>
</table>

• HFA 152a is flammable - but less so than hydrocarbons
• Not categorised as a Volatile Organic Compound in the US
 • Good environmental balance
Dosage form carbon footprints compared

Whole device carbon footprint

- Comparable footprint to DPI
- Majority of MDI footprint due to propellant
 - 99% HFA134a
 - 89% HFA152a

Based on IPAC estimate of 1.5-6.0kgCO2 for 200-dose DPIs
HFA 152a – Mexichem’s Safety Studies

- Inhalation safety
 - GLP exposure safety studies ongoing

- Patient flammability risk assessment
 - No increase in risk over current formulations

- MDI manufacturing safety
 - Ongoing risk assessment of MDI filling options
Does it work?

Aerodynamic performance and chemical stability of salbutamol sulphate suspensions in HFA 134a and HFA 152a
Salbutamol Sulphate: Emitted Dose & APSD Performance

Bench filled aerosols
Suspension Stability Using Turbiscan

<table>
<thead>
<tr>
<th>System</th>
<th>Floc size (µm)</th>
<th>Time to Sediment (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salbutamol Sulphate + 134a</td>
<td>3.77</td>
<td><0.5</td>
</tr>
<tr>
<td>Salbutamol Sulphate + Ethanol + 134a</td>
<td>3.62</td>
<td>1.5</td>
</tr>
<tr>
<td>Salbutamol Sulphate + Oleic acid + Ethanol + 134a</td>
<td>3.55</td>
<td>3.0</td>
</tr>
<tr>
<td>Salbutamol Sulphate + 152a</td>
<td>3.97</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Enhanced suspension stability of Salbutamol Sulphate in HFA152a
In Conclusion

• HFAs 134a & 227ea will remain available for MDI applications
• Based on industry experience of CFC/HFA transition, HFA 152a to date shows promise
 • Environmental sustainability
 • MDI formulation benefits include
 – Good suspension behaviour compared to existing HFAs
 – Enhancement of the chemical stability of labile active ingredients
 – Ease of solution formulation

• Mexichem will continue investigation into the utility of HFA 152a in this area
 • Mexichem’s GLP safety studies are in progress
 • Supply chain
 • Further formulation studies
Contact details

Dr Tim Noakes
Technical Associate
Fluor Business Group
Mexichem UK Ltd
Phone: +44 (0)1928 51 8889
Mobile: +44 (0)7739 65 7896
tim.noakes@mexichem.com

Dr Stuart Corr
Techno-Commercial Director
Fluor Business Group
Mexichem UK Ltd
Phone: +44 (0)1928 51 8811
Mobile: +44 (0)7712 01 0762
stuart.corr@mexichem.com