NEW LUNG-TUMOUR-PENETRATING NANOCARRIER DESIGNED FOR AEROSOLIZED CHEMOTHERAPY

Rémi Rosière
PhD, PharmD

Laboratory of Pharmaceutics and Biopharmaceutics,
Faculty of Pharmacy,
Université libre de Bruxelles (ULB)
• Challenges in lung cancer therapy
 • Current treatment approaches
 • Aerosolized chemotherapy – a new option for treatment?

• Experimental part
 • Design and formulation of an inhalable tumour-targeted nanocarrier
 • *In vitro* and *in vivo* evaluations

• Conclusions and perspectives
CHALLENGES IN LUNG CANCER THERAPY
Lung cancer remains very challenging to treat

- Low drug/nanocarrier concentration in the tumour site
 - Only 0.7% of an injected dose of nanoparticle ends up in a tumour
 - Wilhem et al, Nat Rev Mat 2016

- Systemic toxicities (dose-limiting toxicities)

- Treatment interruption – tumor cell repopulation

- Difficulty for the drug/nanocarrier to distribute throughout solid tumours

- Conventional chemo
- Targeted chemo
- Nanomedicine

Many new identified biomarkers - targets

EGFR, ALK, ROS1, ... Folate receptor?
Aerosolized chemotherapy – a new option for treatment?

- **Clear pharmacokinetic advantage**
 - High drug/nanocarrier doses directly to the lung tumour site
 - Reduction of systemic distribution and toxicities
- **Reduction/suppression of treatment interruption**
- **Access to the lung tumour site through the local bloodstream**
- **Access to the lymphatic system !! Tumour spreading !!**

- **Poor drug deposition**
- **Logistic and safety challenges**

- **Pulmonary toxicity**
- **Penetration into the solid tumour**
- **Time of retention within the lung tumour site**

Device-related challenges

Formulation-related challenges
EXPERIMENTAL PART
Development of an inhalable tumour-targeting nanocarrier

!! **Folate receptor-α** is overexpressed at the surface of lung cancer cells !!

<table>
<thead>
<tr>
<th>Type of lung cancer</th>
<th>% FR-expressing cancer (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>66% (511)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>72% (117)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>51% (71)</td>
</tr>
<tr>
<td>SCLC</td>
<td>25% (24)</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>30% (23)</td>
</tr>
</tbody>
</table>

Paclitaxel-entrapped solid lipid nanoparticles (SLN)

Entrapment efficiency = 99.0 ± 0.3 % (w/w)
Drug loading = 5.1 ± 0.2 % (w/w)

In vitro paclitaxel release profile under physiologic condition

~15% in 24h
Cell binding and uptake of the coated SLN

- Size properties similar to paclitaxel-loaded SLN
- 2 FR-expressing cell lines
 - Human HeLa ovarian adenocarcinoma
 - Mouse M109-HiFR lung carcinoma cell subline
- The SLN seemed to enter FR-expressing cells in vitro

25-NBD-cholesterol

F-PEG-HTCC-Alexa Fluor® 405

PSD of fluorescent SLN

- Non coated
- Coated

Human HeLa ovarian adenocarcinoma

Mouse M109-HiFR lung carcinoma cell subline

Control

30 min 3 h 6 h
Anti-proliferative properties of the coated SLN MTT assay

Half maximum inhibitory concentration (IC$_{50}$) – 8-hours incubation

- **Cell line-dependent**
- **Multiple pathways involved for the SLN to enter the cells**
- **Involvement of folate receptor-mediated endocytosis**
- **Overcoming the Taxol®-resistance in M109-HiFR?**

The SLN entered FR-expressing cancer cells

- Taxol
- Non-coated SLN
- PEG-HTCC-coated SLN
- F-PEG-HTCC-coated SLN
- F-PEG-HTCC-coated SLN + folic acid

HeLa M109-HiFR

- n.s.
- ***
- **
- *
- **

Two-way ANOVA
Lung tumour distribution of coated SLN after pulmonary delivery

The M109 model

Endotracheal nebulization
Microsprayer™ model 1A-1C
(Penn-Century)

Non-treated M109 mouse

25-NBD-cholesterol
IsolectinB4
F-PEG-HTCC

Treated M109 mouse

25-NBD-cholesterol
IsolectinB4
F-PEG-HTCC

✓ Remarkable penetration into solid lung tumour

Minchinton and Tannock, Nat Rev cancer 2006
CONCLUSIONS AND PERSPECTIVES
Inhalable tumour-targeting nanocarrier

WO 2015055796 A1

- Promising results in terms of anti-cancer activity
- Encapsulation and sustained release of paclitaxel
- Able to enter FR-expressing cancer cell lines *in vitro*
- Potentiate the *in vitro* anti-proliferative activity of paclitaxel
- Solid lung tumour-penetrating abilities

InhaTarget

Dry powders for inhalation

Phase I/II

New animal models
Laboratory of Pharmaceutics and Biopharmaceutics, ULB (Belgium)

Prof. Karim AMIGHI
Dr Nathalie WAUTHOZ
Vincent LEVET
Julien HECQ

Dr Rémi ROSIÈRE

Laboratoire de Cancérologie et Toxicologie Expérimentale, ULB (Belgium)
Prof. Véronique MATHIEU

Research Group on Experimental Neurosurgery and Neuroanatomy, KULeuven (Belgium)
Matthias VAN WOENSEL

VIB Vesalius Research Center, KULeuven (Belgium)
Dr Thomas MATHIVET

The Center for Microscopy and Molecular Imaging (Belgium)
Marjorie VERMEERSH